高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
排序:
相关度
发表时间
每页显示:
10
20
30
50
新型Liu混沌系统的模糊反馈同步方法
单梁, 张刚, 李军, 王执铨
2007, 29(10): 2508-2511. doi: 10.3724/SP.J.1146.2006.00310  刊出日期:2007-10-19
关键词: Liu混沌系统;混沌同步;反馈控制;T-S模型;模糊控制
论文研究了新近提出的Liu混沌系统(2004)的模糊反馈同步方法。Liu混沌系统结构不同于以往的连续混沌系统,本文基于T-S(Takagi-Sugeno)模糊模型重构了Liu混沌系统;然后用Lyapunov理论和反馈同步的思想推导了两个重构的Liu系统同步的稳定性条件,并给出了误差系统以衰减率全局渐近稳定的充分条件;最后基于LMI方法进行了仿真实验。良好的仿真结果验证了本文算法的有效性和快速性。
基于承诺的可验证公平性微支付
刘忆宁, 赵全玉
2017, 39(3): 743-748. doi: 10.11999/JEIT160300  刊出日期:2017-03-19
关键词: 微支付, 承诺, 公平性, 可验证性
微支付交易具有交易量极大且单次交易额极小的特点,使得复杂的认证协议不适用于微支付。Micali等人(2002)提出的基于概率选择微支付方案,把微支付聚合成宏支付,大幅提高了微支付的效率。Liu-Yan在(2013)提出了保证所有参与者的数据融入概率选择结果的生成, 而且使得所有参与者可以验证结果的公平性。然而,Liu-Yan方案中银行可能获得额外利益,从而破坏了协议的公平性。该文首先分析了Liu-Yan方案的安全威胁,并且以1个用户-1个商家的模型代替Liu-Yan方案中大量用户-1个商家的模型,以数据承诺技术为基础保障结果的公平性与可验证性。
d-元广义分圆序列的线性复杂度及自相关函数性质分析
柯品惠, 李瑞芳, 张胜元
2012, 34(12): 2881-2884. doi: 10.3724/SP.J.1146.2012.00804  刊出日期:2012-12-19
关键词: 网络安全, 广义分圆, 线性复杂度, 自相关
该文推广了Liu Fang等人(2010)给出的周期为pn, p为奇素数,n为正整数的广义分圆序列的构造,并确定了新构造序列的线性复杂度和自相关函数值的分布。结果表明,推广的构造保持了原构造的高线性复杂度等伪随机特性。由于取值更灵活,较之原构造新构造序列的数量要大得多。
长度为pm的离散哈脱莱变换分离基算法
茅一民
1990, 12(6): 584-592.  刊出日期:1990-11-19
关键词: 正交变换; 离散哈脱莱变换; 分离基算法
Soo-Chang Pei,Ja-Ling wu(1986)和茅一民(1987)提出了长度为2m的分离基2/4哈脱莱变换算法。本文将分离基算法推广到长度为pm的哈脱莱变换,并证明基p2算法实乘次数比基p算法少,而基p/p2算法实乘次数比前两者都少。作为例子,给出了长度为N=3m的基3/9哈脱莱变换快速算法和流图。
几种可转换环签名方案的安全性分析和改进
王化群, 郭显久, 于红, 彭玉旭
2009, 31(7): 1732-1735. doi: 10.3724/SP.J.1146.2008.00928  刊出日期:2009-07-19
关键词: 环签名;密码分析;可转换性
通过对Zhang-Liu-He (2006),Gan-Chen (2004)和Wang-Zhang-Ma (2007)提出的可转换环签名方案进行分析,指出了这几个可转换环签名方案存在可转换性攻击或不可否认性攻击,即,环中的任何成员都能宣称自己是实际签名者或冒充别的成员进行环签名。为防范这两种攻击,对这几个可转换环签名方案进行了改进,改进后的方案满足可转换环签名的安全性要求。
分数阶傅里叶和压缩感知自适应抗频谱弥散干扰
赵杨, 尚朝轩, 韩壮志, 韩宁, 解辉
2019, 41(5): 1047-1054. doi: 10.11999/JEIT180569  刊出日期:2019-05-01
关键词: 信号处理, 频谱弥散, 分数阶傅里叶变换, 压缩感知, 形态理论

频谱弥散(SMSP)干扰与线性调频雷达信号之间存在大量的时频域耦合,干扰效能突出。该文提出一种信息域的抗SMSP干扰的信号处理算法,根据SMSP干扰信号的形式与特点,通过自适应改变压缩感知的干扰基字典,同时匹配雷达信号与干扰信号的调频率,构建压缩感知求解模型并基于凸优化算法完成信号重构,最终实现干扰信号的识别及雷达信号的提取。该算法中冗余字典的构造采用了Pei型分数阶傅里叶快速分解方法,不需要反复对信号进行时频域解耦,并且迭代次数较少,运算效率较高。